CHANGE 1

DEPARTMENT OF THE ARMY TECHNICAL BULLETIN

CALIBRATION PROCEDURE FOR TRANSPONDER TEST SET TS-1809 (AN/APM-123(V)1)

Headquarters, Department of the Army, Washington, DC 24 March 2004

Distribution Statement A: Approved for public release; distribution is unlimited.

TB 9-6625-2163-35, 30 July 2003, is changed as follows:

1. Remove old pages and insert new pages as indicated below. New or changed material is indicated by a vertical bar in the margin of the page.

Remove Pages

3 and 4

Insert Pages

3 and 4

2. File this change sheet in front of the publication for reference purposes.

By Order of the Secretary of the Army:

Official:

PETER J. SCHOOMAKER

General, United States Army Chief of Staff

Administrative Assistant to the Secretary of the Army

0402601

Distribution:

To be distributed in accordance with IDN 341126, requirements for TB 9-6625-2163-35.

DEPARTMENT OF THE ARMY TECHNICAL BULLETIN

CALIBRATION PROCEDURE FOR TRANSPONDER TEST SET TS-1809 (AN/APM-123(V)1)

Headquarters, Department of the Army, Washington, DC 30 July 2003

Approved for public release; distribution is unlimited.

REPORTING OF ERRORS AND RECOMMENDING IMPROVEMENTS

You can improve this manual. If you find any mistakes or if you know of a way to improve these procedures, please let us know. Mail your letter or DA Form 2028 (Recommended Changes to Publications and Blank Forms) directly to: Commander, U.S. Army Aviation and Missile Command, ATTN: AMSAM-MMC-MA-NP, Redstone Arsenal, AL 35898-5000. A reply will be furnished to you. You may also provide DA Form 2028 information to AMCOM via e-mail, fax, or the World Wide Web. Our fax number is DSN 788-6546 or Commercial 256-842-6546. Our e-mail address is: 2028@redstone.army.mil. Instructions for sending an electronic 2028 may be found at the back of this manual. For the World Wide Web, use https://amcom2028.redstone.army.mil.

			Paragraph	Page
SECTION	I.	IDENTIFICATION AND DESCRIPTION		
		Test instrument identification	1	2
		Forms, records, and reports	2	2
		Calibration description		2
	II.	EQUIPMENT REQUIREMENTS		
		Equipment required	4	3
		Accessories required	5	3
	III.	CALIBRATION PROCESS		
		Preliminary instructions	6	4
		Equipment Setup	7	5
		Receiver sensitivity		7
		Receiver bandwidth and frequency	9	9
		Video enable delay and gating	10	10
		Video reply and comparison pulse width	11	11
		Comparison pulse position	12	11
		Decoder replies	13	13
		Read delay and error detector		14
		Reply evaluator	15	14
		Transmitter frequency and power	16	15
		Transmitter pulse characteristics and	17	16
		challenge		

^{*}This bulletin supersedes TB 9-6625-2163-35, dated 16 July 2001.

	Paragraph	Page
Mode 4 decoder characteristics	18	17
Mode 4 reply evaluator	19	21
Mode 4 power supply check	20	22
Power supply	21	23
Final procedure	22	23

SECTION I IDENTIFICATION AND DESCRIPTION

- 1. Test Instrument Identification. This bulletin provides instructions for the calibration of Transponder Test Set TS-1809 (AN/APM-123(V)l). TM 11-6625-667-45 was used as the prime data source in compiling these instructions. The equipment being calibrated will be referred to as the TI (test instrument) throughout this bulletin.
 - a. Model Variations. None.
- **b.** Time and Technique. The time required for this calibration is approximately 12 hours, using the dc and low frequency and microwave techniques.

2. Forms, Records, and Reports

- **a**. Forms, records, and reports required for calibration personnel at all levels are prescribed by TB 750-25.
- **b**. Adjustments to be reported are designated (R) at the end of the sentence in which they appear. When adjustments are in tables, the (R) follows the designated adjustment. Report only those adjustments made and designated with (R).
- **3. Calibration Description.** TI parameters and performance specifications which pertain to this calibration are listed in table 1

Table 1. Calibration Description

Table 1. Cambration Description				
Test instrument parameters	Performance specifications			
Transmitter:				
Frequency	Range: 1030 MHz (crystal controlled)			
	Accuracy: ±0.02% (± 206 kHz)			
Power output	Range: -6 dBm (at antenna terminal)			
Sidelobe suppression	Range: 3 pulses			

Table 1. Calibration Description Continued

Test instrument parameters	Performance specifications
Transmitter:	1
Pulse repetition	Range: 220 to 235 pps
Pulse spacing (P1 and P3)	
Mode 1	Range: 3 μs Accuracy: ±0.2 μs
Mode 2	Range: 5 μs Accuracy: ±0.2 μs
Mode 3/A	Range: 3 μs Accuracy: ±0.2 μs
Test	Range: 6.5 μs Accuracy: ±0.2 μs
Mode C	Range: 21 ms Accuracy: ±0.2 μs
Mode 4	Consecutive replies Radiate mode: pass 56 of 64 ± 1 Direct mode: pass 16 of 64 ± 1
Sidelobe suppression pulse spacing (P1 and P2)	Range: 2 μs Accuracy: ±.015 μs
Receiver: Frequency	Range: 1090 MHz Accuracy: ± 0.05% (center)
Frequency bandwidth (3 decibels down)	Range: 6.5 MHz Accuracy: ± 1.0 MHz
Sensitivity	Range: -9 dBm Accuracy: ± 1 dBm

SECTION II EQUIPMENT REQUIREMENTS

- 4. Equipment Required. Table 2 identifies the specific equipment to be used in this calibration procedure. This equipment is issued with Secondary Transfer Calibration Standards Set AN/GSM-287. Alternate items may be used by the calibrating activity when the equipment listed in table 2 is not available. The items selected must be verified to perform satisfactorily prior to use and must bear evidence of current calibration. The accuracies listed in table 2 provide a four-to-one ratio between the standard and TI.
- **5.** Accessories Required. The accessories required for this calibration are common usage accessories issued as indicated in paragraph 4 above and are not listed in this calibration procedure. The following peculiar accessories are also required for this calibration: Circulator, P/N 7916840 (5985-01-217-0286), and Variable Attenuator, Weinchel, Model 2971-1 (5985-00-160-2296) or Weinchel, Model 905LS.

Table 2. Minimum Specifications of Equipment Required

Table 2. Winimum Specifications of Equipment Required				
Common name	Minimum use specifications	Manufacturer and model (part number)		
FREQUENCY	Range: 1.025 to 1.099 GHz	Fluke, Model PM6681/656		
COUNTER	Accuracy: ±.005%	(PM6681/656)		
MULTIMETER	Range: 5 to 150 V dc	Fluke, Model 8840A/AF-05/09		
MOLIMETER	Accuracy: ± 0.3%	(AN/GSM-64D)		
PEAK POWER	Range: -5 to -21 dBm	Wavetek, Model 8502A		
METER	Accuracy: ±5%	(8502-16934-17071) w/power		
(TEST SET, RADIO	Accuracy. ±570	detector, Wavetek Model 16934		
FREQ POWER)		(16934)		
PULSE	Range: 4 to 8 V	LeCroy, Model 9210 (9210)		
GENERATOR	Pulse width: .5 to 25 µs	w/plug-in, LeCroy, Model 9211		
GENERALION	Trigger Delay: 65 µs	(9211) (MIS 45839)		
RADAR TEST SET	Input:	(AN/UPM-155) w/accessory kit		
	Frequency: 1030 ±.05 MHz	(TITY CT IVI 199) Wraccessory Rit		
Width Measurement: ±.025 μs				
Spacing Measurement: ±.025 µs				
Power Level: 0 to -10 dBm				
Pulse Range: 0 to 3907 ms ±3%				
Output:				
Frequency: 1080 to 1099 MHz				
Accuracy: ±0.01%				
Pulse Source: 0 to 1 µs				
	Power Level: 0 to -10 dBm			
Oscilloscope:				
	Timebase: $.01 \mu s$ to $4 ms \pm .01\%$			
	Amplitude: 0 to 8 Vpp ±3%			

SECTION III CALIBRATION PROCESS

6. Preliminary Instructions

- a. The instructions outlined in paragraphs 6 and 7 are preparatory to the calibration process. Personnel should become familiar with the entire bulletin before beginning the calibration.
- **b**. Items of equipment used in this procedure are referenced within the text by common name as listed in table 2.
- c. Unless otherwise specified, verify the result of each test and, whenever the test requirement is not met, take corrective action before continuing with the calibration. Adjustments required to calibrate the TI are included in this procedure. Additional maintenance information is contained in TM 11-6625-667-45.
 - **d**. Unless otherwise specified all controls and control settings refer to the TI.

4 CHANGE 1

PIN: 065659-001

7. Equipment Setup

WARNING

HIGH VOLTAGE is used or exposed during the performance of this calibration. DEATH ON CONTACT may result if personnel fail to observe safety precautions. REDUCE OUTPUTS to minimum after each step within the performance check where applicable.

- a. Remove TI from its case and then remove metal shield covering circuit card assembly.
 - **b**. Set switches as listed in (1) through (5) below:
 - (1) **FUNCTION** switch to **SELF-TEST**.
 - (2) **MODE** switch to 1.
 - (3) **REFERENCE CODE** switches to 7777.
 - (4) ISLS switch to OFF.
 - (5) **MODE 4** switches to **DOWN** position.
- **c**. Connect TI to appropriate power source (115 V ac or 28 V dc) and set **POWER** switch to **ON**. Allow 15 minutes for warm-up.
- d. Press PUSH TO TEST switch and turn to LOCK position. ACCEPT lamp will glow.
- e. Set MODE switch to 2, 3/A, C, and TEST positions and repeat step d above for each setting. The ACCEPT lamp will glow in each position.
 - f. Set **FUNCTION** switch to **SYSTEM** and **MODE** switch to **2**.
 - **g**. Connect equipment as shown in figure 1.

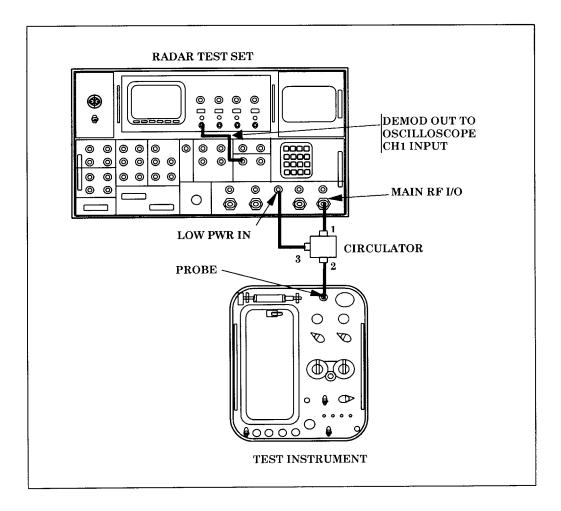


Figure 1. Preliminary equipment setup.

- **h.** Set radar test set (RTS) **INTERROGATOR Menus** as listed in (1) through (6) below. For the remainder of this procedure these settings will be identified as the **INITIAL** RTS settings.
 - (1) Menu 2 M1 through MC to OFF.
- (2) Menu 3 REPLY SIGNAL to SIF, M2 through MC to 7777 and ON, RANGE DELAY to 0 µs, CHAL SOURCE to UUT, F2: to ON, and SIF2 to OFF.
 - (3) Menu 10 MAIN FREQ to 1090 MHZ and ON.
 - (4) Menu 11 MODULATION and 1ST REPLY to ON, all other settings to OFF.
 - (5) Menu 14 PRF to 267PPS and O TRIGGER to INTERNAL.

(6) Menu 16 - SOURCE to LOW PWR, and RF to 0.

NOTE

Store initial menu setups in **h**(1) through (6) above by pressing keys **FUNC** and **5** on keypad and choosing a memory location at 1 through 4.

- i. Press **PUSH TO TEST** switch and turn to **LOCK** position.
- j. Perform a power measurement on RTS (on **Menu 16** select **POWER** then press the **ENTER** key on keypad. When reading is obtained press **UP** or **DOWN ARROW** on keypad to stop measurement). TI **ACCEPT** light will glow.

8. Receiver Sensitivity

a. Performance Check

- (1) On RTS select **Menu 11** and decrease **RF** power until the **REJECT** light glows.
- (2) Increase **RF** power until **ACCEPT** light just triggers **ON**.
- (3) Set **Menu 11 CW** selection to **ON**. Move cable from **PROBE** connector to peak power meter and take a reading. If reading is not between -8 and -10 dBm, perform **b** below.
- (4) On **Menu 11** set **CW** to **OFF**. Disconnect cable from peak power meter and reconnect to **PROBE** connector.
 - (5) Increase Menu 11 RF power by 3 dBm. The ACCEPT light will glow.

b. Adjustments

- (1) Install variable attenuator between RTS Main RF I/O connector and circulator **PORT 1**. Set Menu 11 RF power to 0 dBm and adjust variable attenuator for -9 dBm on peak power meter.
 - (2) On Menu 11 set CW to OFF.
- (3) Disconnect cable from peak power meter and reconnect to TI **Probe** connector. Adjust A8R5 (fig. 2) until **ACCEPT** light glows. Decrease RTS **RF** power by 1 dBm. TI **REJECT** indicator will glow.
 - (4) Remove variable attenuator and reconnect circulator to MAIN RF I/O.
 - (5) Repeat $\mathbf{a}(1)$ through (5).

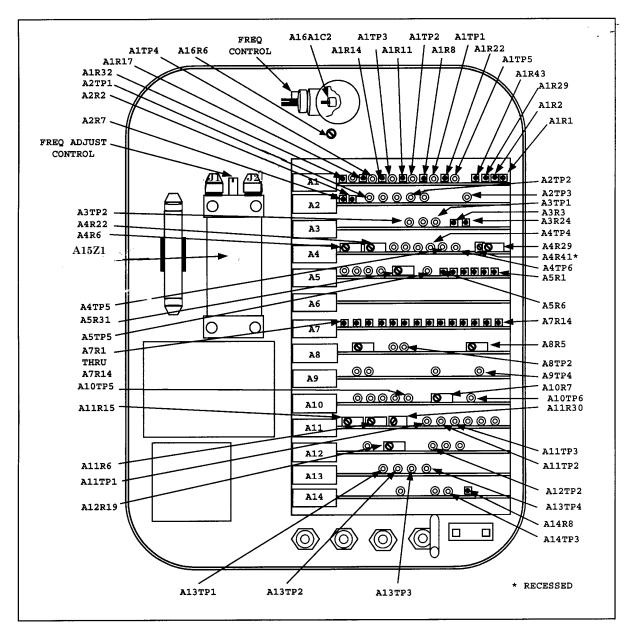


Figure 2. Test instrument adjustments and test points.

9. Receiver Bandwidth and Frequency

a. Performance Check

- (1) Select **Menu 10** and increase **MAIN FREQ** until TI **REJECT** lamp comes on. Slowly decrease **MAIN FREQ** until **ACCEPT** lamp just lights and record frequency.
- (2) Decrease MAIN FREQ until TI REJECT lamp comes on. Slowly increase MAIN FREQ until ACCEPT lamp just lights and again record frequency.
- (3) Determine center frequency by adding values recorded in (2) and (3) above and dividing by 2. If TI center frequency is not between 1089.5 and 1090.5 MHz, perform $\mathbf{b}(1)$ through (5) below.
- (4) Determine bandwidth by subtracting value recorded in (2) from value recorded in (1) above. If bandwidth is not between 5.5 and 7.5 MHz, perform $\mathbf{b}(6)$ through (13) below.

b. Adjustments

NOTE

Be extremely careful when performing these adjustments because they are critical to equipment performance. Steps (1) through (4) below shall be used, if necessary, to peak the receiver frequency. Steps (6) through (13) below shall be used only if the bandwidth is not within limits.

- (1) Disconnect cable from RTS oscilloscope **CH 1** to **DEMOD OUT** connector and connect oscilloscope **CH 1** (using X10 probe in RTS accessory kit) to test point A8TP2 of TI (fig. 2).
 - (2) On RTS select Menu 10 and set FREQUENCY to 1090 MHz.
- (3) Loosen (slightly) locknut of TI **FREQ ADJ** control at preselector A15Z1 (fig. 2) and adjust **FREQ ADJ** control until displayed pulse is peaked (R).
- (4) Retighten **FREQ ADJ** control locknut, while using a screwdriver to maintain a peaked pulse.

NOTE

Steps (3) and (4) may have to be repeated for optimum results.

(5) Repeat **a**(1) through (3) above.

NOTE

During factory calibration, a red mark may have been placed on each jack to identify probe position. If these marks are not present, start with (6) below. If the marks are present, start with (11) below.

- (6) Loosen base plate of jack A15Z1J1 (fig. 2) and A15Z1J2 (fig. 2).
- (7) Remove jacks A15Z1J1 (fig. 2) and A15Z1J2 (fig. 2) from TI. Observe direction of each probe and mark position of one side on each jack.
- (8) Replace each jack and fasten A15Z1J1 (fig. 2) in position (mark pointing at FREQ ADJ CONTROL).
- (9) Position jack A15Z1J2 (fig. 2) using mark approximately 10 degrees from A15Z1J1 (fig. 2) mark. Fasten A15Z1J2 (fig. 2) in position.
 - (10) Perform **a**(1), (2), and (4) above.
- (11) If the bandwidth is too broad, rotate the mark on jack A15Z1J2 (fig. 2) slightly toward mark on jack A15Z1J1 (fig. 2). If bandwidth is too narrow, adjust it slightly away from mark at A15Z1J1 (fig. 2).
 - (12) Fasten jack A15Z1J1 (fig. 2) by replacing baseplate.
- (13) Determine bandwidth as described in $\mathbf{a}(1)$, (2), and (4) above. If necessary, repeat (11) and (12) above.

10. Video Enable Delay and Gating

- (1) Disconnect cable from RTS oscilloscope **CH 1** and **DEMOD OUT** connector and connect X10 oscilloscope probe from **CH 1** to test point A10TP5 (fig. 2).
- (2) Connect second X10 probe (also from RTS kit) from oscilloscope CH 2 to test point A4TP6 (fig 2).
- (3) Press oscilloscope AUTO-SCALE pushbutton and set TIME/DIV switch to 1 μ s. Delay from leading edge of second pulse on CH 2 to trailing edge of pulse on CH 1 should be between 1.6 and 2.0 μ s; if not, perform b below.
- (4) Disconnect oscilloscope CH 1 probe from A10TP5 and connect to test point A8TP2 (fig. 2).
- (5) Disconnect oscilloscope CH 2 probe from A4TP6 and connect to test point A9TP4 (fig. 2).
- (6) Press oscilloscope **AUTO-SCALE** pushbutton once again and set **TIME/DIV** switch to **2 μs**. Delay between leading edge of last pulse on **CH 1** and trailing edge of pulse on **CH 2** will not exceed 6 μs.
- **b.** Adjustments. Adjust test instrument video enable delay control A10R7 (fig. 2) until delay from leading edge of second pulse on **CH 1** to trailing edge of pulse on **CH 2** is 1.8 μs (R).

11. Video Reply and Comparison Pulse Width

a. Performance Check

- (1) Disconnect oscilloscope probes from test points A8TP2 and A9TP4 (fig. 2). Connect **CH 1** probe to test point A11TP1 (fig. 2).
- (2) Set oscilloscope TIME/DIV switch to 100 ns, TRIGGER SOURCE to CH 1, and adjust HORIZONTAL POSITION control to position pulse on CH 1 for a pulse width measurement. If video pulse width is not between 0.65 and 0.7 μ s, perform b(1) below.
- (3) Disconnect oscilloscope **CH 1** probe from test point A11TP1 (fig. 2) and connect it to A11TP2 (fig. 2). If width of comparison pulse is not between 0.49 and 0.51 μ s, perform **b**(2) below.

NOTE

When visual accuracy of oscilloscopes timing is questionable (as in the paragraph above and subsequent paragraphs), use oscilloscope width measurement or cursor function to obtain required accuracy.

b. Adjustments

- (1) Adjust control A11R6 (fig. 2) until pulse width is 0.675 µs (R).
- (2) Adjust control A11R15 (fig. 2) until pulse width is 0.5 µs (R).

12. Comparison Pulse Position

- (1) Disconnect oscilloscope **CH 1** probe from test point A11TP2 (fig. 2) and connect it to test point A11TP1 (fig. 2).
 - (2) Connect oscilloscope CH 2 probe to test point A11TP2 (fig. 2).
- (3) Set **FUNCTION** switch to **I/P** and press **PUSH TO TEST** switch and turn to **LOCK** position.
 - (4) Set RTS INTERROGATOR Menu 3 REPLY SIGNAL to ID OF POS.
- (5) Perform a power measurement on RTS. Stop measurement after reading has been obtained.
- (6) Press oscilloscope **AUTO-SCALE** pushbutton and set **TIME/DIV** switch to obtain two pulse trains shown in figure 3. Pulse C1 (fig. 3) of each train shall be present and **ACCEPT** lamp will glow.
- (7) Set **TIME/DIV** switch to **500** ns and adjust **HORIZONTAL POSITION** control to reference C1 pulses on **CH 1** and **CH 2** to center graticule line on display. If pulse on **CH 2** is not centered within pulse on **CH 1**, perform **b**(1).



Figure 3. Comparison pulse position.

- (8) Repeat technique of (7) above for each of the following pulses: A1, C2, A2, C4, A4, B1, D1, B2, D2, B4, D4, F2, and I/P (fig. 3). If pulse positions are not as specified, perform **b**(2) below for appropriate pulses.
 - (9) Disconnect oscilloscope probes from TI.

b. Adjustments

- (1) Adjust oscilloscope **HORIZONTAL POSITION** control to reference C1 pulse on **CH 1** and **CH 2** to center graticule line on display. Adjust TI control A7R1 (fig. 2) to center C1 (fig. 3) pulse on **CH 2** with respect to C1 (fig. 3) pulse on **CH 1** (R).
- (2) Adjust **HORIZONTAL POSITION** control to reference respective pulse on **CH** 1 and **CH** 2 to center graticule line on display. Adjust controls as indicated in (a) through (m) below (fig. 3) to center pulses on **CH** 2 within respective pulse on **CH** 1 (fig. 3):
 - (a) Pulse A1 A7R2 (R)(b) Pulse C2 A7R3 (R)
 - (c) Pulse A2 A7R4 (R)
 - (d) Pulse C4 A7R5 (R)
 - (e) Pulse A4 A7R6 (R)
 - (f) Pulse B1 A7R7 (R)
 - (g) Pulse D1 A7R8 (R)
 - (h) Pulse B2 A7R9 (R)
 - (i) Pulse D2 A7R10 (R)
 - (j) Pulse B4 A7R11 (R)
 - (k) Pulse D4 A7R12 (R)
 - (l) Pulse F2 A7R13 (R)
 - (m) Pulse I/P A7R14 (R)

13. Decoder Replies

a. Performance Check

- (1) Press PUSH TO LOCK switch and turn to LOCK position.
- (2) Set **FUNCTION**, **MODE**, and **CODE** switches and RTS menu functions as listed in table 4 below. **ACCEPT** and **REJECT** lamps will indicate as listed.

Table 4. Decoder Replies

Test instrument			Radar test set		Test instrument
			Menu 3	Menu 3	ACCEPT/REJECT
FUNC	MODE	CODE	CODES	REPLY SIGNAL	lamp
SYSTEM	2	7777	M2: 0000	SIF	REJECT
SYSTEM	2	0000	M2: 0000	SIF	ACCEPT
SYSTEM	2	1111	M2: 0000	SIF	REJECT
SYSTEM	2	1111	M2: 1111	SIF	ACCEPT
SYSTEM	2	2222	M2: 1111	SIF	REJECT
SYSTEM	2	2222	M2: 2222	SIF	ACCEPT
SYSTEM	2	3333	M2: 2222	SIF	REJECT
SYSTEM	2	3333	M2: 3333	SIF	ACCEPT
SYSTEM	2	4444	M2: 3333	SIF	REJECT
SYSTEM	2	4444	M2: 4444	SIF	ACCEPT
SYSTEM	2	5555	M2: 4444	SIF	REJECT
SYSTEM	2	5555	M2: 5555	SIF	ACCEPT
SYSTEM	2	6666	M2: 5555	SIF	REJECT
SYSTEM	2	6666	M2: 6666	SIF	ACCEPT
SYSTEM	2	7777	M2: 6666	SIF	REJECT
SYSTEM	2	7777	M2: 7777	SIF	ACCEPT
EMERG	1	7700	M1: 7700	SIF	REJECT
EMERG	2	7700	M2: 7700	SIF	REJECT
EMERG	3/A	7700	M3/A: 7700	SIF	REJECT
EMERG	C	7700	MC: 7700	SIF	ACCEPT
EMERG	C	7700	MC: 7700	VAR EMERG	REJECT
EMERG	3/A	7700	M3/A: 7700	VAR EMERG	ACCEPT
EMERG	2	7700	M2: 7700	VAR EMERG	ACCEPT
EMERG^{1}	1	7700	M1: 7700	VAR EMERG	ACCEPT
I/P	2	7700	M2: 7700	ID OF POS	ACCEPT
I/P	3/A	7700	M3/A: 7700	ID OF POS	ACCEPT

¹Perform transmitter output power check if emergency mode 1 step produces a flickering **ACCEPT** light.

b. Adjustments. No adjustments can be made.

14. Read Delay and Error Detector

a. Performance Check

- (1) Connect RTS oscilloscope **CH 1** probe to test point A10TP6 (fig. 2).
- (2) Set **FUNCTION** switch to **SYSTEM**, **MODE** switch to **1**, and **CODE** switches to **7777**.
 - (3) Press **PUSH TO TEST** switch and turn to **LOCK** position.
- (4) Set RTS **Menus** to **INITIAL** settings and perform a power measurement. Stop measurement after reading has been obtained. **ACCEPT** lamp will glow.
- (5) Press RTS oscilloscope **AUTO-SCALE** pushbutton and set **TIME/DIV** switch to **20 μs**. Verify width of pulse on oscilloscope **CH 1** is between 140 and 160 μs.
- (6) Disconnect CH 1 probe from test point A10TP6 (fig. 2) and connect it to test point A11TP3 (fig. 2).
- (7) Set **TIME/DIV** switch to .1 μ SEC. If negative pulse width on CH 1 is not between 0.34 and 0.36 μ s, perform **b** below.
- **b.** Adjustments. Adjust A11R30 (fig. 2) until width of pulse (negative side) on oscilloscope CH 1 is 0.35 μs (R).

15. Reply Evaluator

a. Performance Check

- (1) Set **MODE** switch to 2.
- (2) Install variable attenuator between RTS MAIN RF I/O connector and circulator **PORT 1**. Set variable attenuator to minimum setting.
- (3) Connect RTS oscilloscope **CH1** probe ground lead (-) to A13TP2 (fig. 2) and probe tip (+) to A12TP2 (fig. 2). Set oscilloscope **CH1 VOLT/DIV** switch for **200 mV**, **COUPLING** to **DC**, and adjust vertical position control to align trace on bottom graticule line.
- (4) Perform a power measurement. Stop measurement after reading has been obtained. ACCEPT lamp will glow.
- (5) Change RTS MENU 3 M2 CODES to 7767. Record oscilloscope voltage indication. Return CODE switches to 7777.
- (6) Adjust variable attenuator until **ACCEPT** and **REJECT** indicators glow alternately. Oscilloscope dc voltage will be approximately 70-80 percent of that recorded in (5) above; if not, perform **b** below.

NOTE

The 70-80 percent of the dc voltage recorded in (5) above or the alternating light condition can be held for just a short time.

- (7) Adjust variable attenuator until oscilloscope indication is 50 percent of that recorded in (5) above. **ACCEPT** indicator will glow.
- (8) Disconnect oscilloscope probe from TI and remove variable attenuator connected between RTS MAIN RF I/O and circulator PORT 1.

b. Adjustments

- (1) Adjust variable attenuator until oscilloscope indication is 70-80 percent of dc voltage recorded in (5) above, and adjust TI test control A12R19 (fig. 2) until **ACCEPT** and **REJECT** indicators glow alternately (R).
- (2) Adjust variable attenuator until oscilloscope indication is 50 percent of dc voltage recorded in (5) above. **ACCEPT** lamp will glow.
 - (3) Repeat steps **a**(4) through (7) above.

16. Transmitter Frequency and Power

a. Performance Check

- (1) Set **FUNCTION** switch to **FREQ/POWER**.
- (2) Turn power **OFF** and connect jumper between A4TP5 (fig. 2) and A13TP2 (fig. 2). Turn power **ON**.

NOTE

It may be necessary to allow TI to warm up for several minutes after being turned off.

- (3) Connect frequency counter input to **PROBE** connector and observe counter indication. Display will read between 1029.794 and 1030.206 MHz.
- (4) Disconnect frequency counter from **PROBE** connector and connect peak power meter.
- (5) Observe power meter indication and allow reading to stabilize. If power meter indication is not between -5 and -7 dBm, perform $\mathbf{b}(1)$ below.
- (6) Set power switch **OFF** and move jumper from A4TP5 (fig. 2) to A4TP4 (fig. 2). Set power switch **ON** again.
- (7) Observe power meter indication and allow reading to stabilize. If power meter does not indicate between -20 and -22 dBm, perform $\mathbf{b}(2)$ and (3) below.
- (9) Set power switch **OFF** and remove jumper from A4TP4 (fig. 2) and A13TP2 (fig. 2). Set power switch **ON** again.
 - (10) Set **FUNCTION** switch to **SELF TEST** and verify **ACCEPT** indicator is on.

b. Adjustments

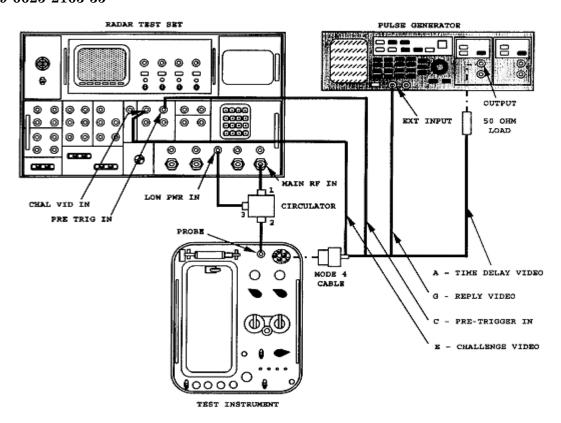
- (1) Adjust A16A1C2 (fig. 2) until output power is -6 dBm (R).
- (2) Turn TI power **OFF**. Disconnect jumper from test point A4TP5 (fig. 2) and connect it to test point A4TP4 (fig. 2). Turn power **ON**.
 - (3) Adjust A16R6 (fig. 2) until output power is -21 dBm (R).

17. Transmitter Pulse Characteristics and Challenge

- (1) Connect equipment as shown in figure 1.
- (2) Set switches as listed in (a) through (d) below:
 - (a) **FUNCTION** switch to **SYSTEM**.
 - (b) **MODE** switch to 1.
 - (c) **CODE** switches to 7777.
- (3) Set RTS to **INITIAL** settings. Select **MENU 16** and set **PULSE#** to **1** and **TO PULSE** to **2.** Perform a time A to B measurement on the RTS (select **SPACING** and press **ENTER** on keypad). If spacing between first and third pulses (second pulse will be suppressed) is not between 2.8 and 3.2 μs, perform **b**(1) below.
- (4) Repeat technique of (3) above for setting and indications listed in table 5. If pulse spacing is not within specified tolerance, perform respective adjustment.
- (5) Position **ISLS** switch to **ON** and observe spacing between leading edge of first and second pulses. If pulse spacing is not between 1.9 and 2.1 µs, perform **b**(6) below.

Table 5. Transmitter Pulse Characteristics				
Test instrument	Radar test set spacing			
MODE	indication (μs)			
switch settings	Min	Max	Adjustments	
2	4.8	5.2	b(2)	
3/A	7.8	8.2	b(3)	
TEST	6.3	6.7	b(4)	
C	20.8	21.2	b(5)	

Table 5. Transmitter Pulse Characteristics


- (6) Set **ISLS** switch to **OFF**.
- (7) Set RTS MENU 16 TO PULSE to 1. Measure width of first pulse (select PULSE WIDTH and press ENTER on keypad). Measure width of second pulse (change MENU 16 PULSE# to 2 and TO PULSE to 2, then select WIDTH and press ENTER on keypad). If width of both pulses is not between 0.7 and 0.9 µs perform **b**(7) below.
- (8) Set ISLS switch to \boldsymbol{ON} and verify pulse width of ISLS pulse is between 0.7 and 0.9 $\mu s.$

b. Adjustments

- (1) Adjust A5R1 (fig. 2) until spacing between first and third pulse is 3 μs (R).
- (2) Set **MODE** switch to **2.** Adjust A5R2 (fig. 2) until spacing between first and third pulse is $5 \mu s$ (R).
- (3) Set **MODE** switch to 3/A. Adjust A5R3 (fig. 2) until spacing between first and third pulse is 8 μ s (R).
- (4) Set **MODE** switch to **TEST**. Adjust A5R5 (fig. 2) until spacing between first and third pulse is $6.5 \mu s$ (R).
- (5) Set **MODE** switch to **C**. Adjust A5R4 (fig. 2) until spacing between first and third pulse is $21 \mu s$ (R).
- (6) Set ISLS switch to ON. Adjust A4R22 (fig. 2) until spacing between first and second pulse is 2 μ s (R).
- (7) Adjust A4R41 (fig. 2) until width of first pulse is 0.8 μs, and for second pulse adjust A4R29 (fig. 2) (R).

18. Mode 4 Decoder Characteristics

- (1) Connect equipment as shown in figure 4.
- (2) Set switches as listed in (a) through (d) below:
 - (a) **FUNCTION** switch to **SYSTEM**.
 - (b) **MODE** switch to 4.
 - (c) **ISLS** switch to **OFF**.
- (3) Position pulse generator controls as listed in (a) through (i) below:
 - (a) VHIGH ----- 4.000V.
 - (b) VLOW ----- 0mV.
 - (c) WIDTH ----- 500.0ns.
 - (d) DELAY ----- $65.00 \mu s$.
 - (e) LEAD and TRAIL 1.00ns.
 - (f) **PERIOD** ----- 4.400ms.
 - (g) TRIGGER MODE ---- Single.

Mode 4 Connector Pin Out

Mode 4 Connector/Cable Pin Out

Mode 4	Mode 4 Connector		
Cable	Signal Pin	Ground Pin	
Time Delay Video	A	В	
Pre-Trigger In	\mathbf{c}	D	
Challenge Video	E	F	
Reply Video	G	Н	

Figure 4. Mode 4 decoder – equipment setup

- (h) LEVEL ---- 0.50V.
- (i) SLOPE ----- Positive.
- (4) Set RTS INTERROGATOR MENUS as follows:
 - (a) Menu 2 M4 to WORD C, all other selections to OFF.
- (b) Menu 3 REPLY SIGNAL to MODE 4-3, M1 to MC to OFF, RANGE DELAY to 3 μ s, CHAL SOURCE to INTERNAL, F2 to OFF, and SIF2 to OFF.
- (c) Menu 8 GATING: to INTERNAL, EXTERNAL: to PASS, INT GATE: #PASSED: to 64, and #INHIBITED: to 0.
 - (d) Menu 10 MAIN FREQ to 1090 MHZ.
- (e) $Menu\ 11-MODULATION$ and $1st\ REPLY$ to ON; all other selections to OFF.
- (f) Menu 14 PRF to 267 PPS, O TRIGGER to INTERNAL, KIT/KIR SELECT to KIR, SOURCE to INT, and KIR TRIGGER to INT.
 - (g) Menu 16 SOURCE to LOW PWR and RF to -6.
- (5) Perform a power measurement on RTS. When measurement is obtained, press the up or down arrow on the keypad to stop measurement.
- (6) Press PUSH TO TEST switch and turn to LOCK position. TI ACCEPT lamp will glow.
- (7) Connect RTS oscilloscope **CH 1** probe (X10) to A1TP3 (fig. 2). Press **AUTO-SCALE** pushbutton on oscilloscope and adjust **TIME/DIV** control to **100** ns. If width of each pulse is not between 0.29 and 0.31 µs, perform **b**(2) below.
- (8) Connect RTS oscilloscope **CH 2** probe (X10) to A1TP4 (fig. 2). Enable **CH 2** and adjust amplitude as necessary. If width of pulse on **CH2** is not between 0.65 and 0.75 μ s, perform **b**(1) below.
- (9) Disconnect oscilloscope **CH 2** probe from A1TP4 (fig. 2) and connect to A1TP1 (fig. 2). If width of each pulse on **CH 2** is not between 0.29 and 0.31 μs, perform **b**(3) below.
- (10) Observe spacing of first pulse of **CH 1** and **CH 2**. If spacing between leading edge of first pulse on **CH 1** and leading edge of first pulse on **CH 2** is not between 3.59 and 3.61 μ s, perform **b**(4) below.
- (11) Disconnect **CH 2** probe from A1TP1 (fig. 2) and connect it to A1TP2 (fig. 2). If width of each pulse on **CH 2** is not between 0.29 and 0.31 µs, perform **b**(5) below.
- (12) Observe spacing of first pulse of **CH 1** and **CH 2**. If spacing between leading edge of first pulse on **CH 1** and leading edge of first pulse on **CH 2** is not between 1.79 and 1.81 µs, perform **b**(6) below.

- (13) Disconnect **CH 2** probe from A1TP2 (fig. 2) and connect it to A1TP5 (fig. 2). If width of positive pulse on **CH 2** is not between 142.5 and 157.5 µs, perform **b**(7) below.
 - (14) Disconnect CH 2 probe from A1TP5 (fig. 2) and observe waveform on CH1.
- (15) On RTS **Menu 11**, decrease **RF** output until displayed reply video just disappears.
 - (16) Increase **RF** output until reply video re-appears.
- (17) Disconnect RTS output from **PROBE** input and connect to power meter. On **Menu 11**, set **CW** selection to **ON**. If power meter indication is not between -8 and -10 dBm, perform **b**(8) through (12) below and record power meter indication.
- (18) Disconnect RTS output from power meter and reconnect to **PROBE** input. Set **CW** selection to **OFF**.
 - (19) Increase RTS output level by 3 dBm from value recorded in (17) above.
 - (20) Press **PUSH TO TEST** switch and turn to **LOCK** position.

b. Adjustments

- (1) Adjust A1R17 (fig. 2) until width of pulses is 0.7 µs (R).
- (2) Adjust A1R14 (fig. 2) until width of pulses is 0.3 µs (R).
- (3) Adjust A1R8 (fig. 2) until width of pulses is 0.3 μs (R).
- (4) Adjust A1R1 (fig. 2) until spacing between leading edges of first pulse on CH 1 and CH 2 is 3.6 μs (R).
 - (5) Adjust A1R11 (fig. 2) until width of pulses is 0.3 μs (R).
- (6) Adjust A1R2 (fig. 2) until leading edge of first pulse on **CH 1** and leading edge of first pulse on **CH 2** are spaced 1.8 μs (R).
 - (7) Adjust A1R22 (fig. 2) until width of pulse is 150 μs (R).
 - (8) Adjust RTS Menu 11 RF output to 0 dBm.
- (9) Install variable attenuator between **RTS Main RF I/O** and circulator **PORT 1**. Adjust attenuator for **-9 dBm** indication on power meter.
- (10) Disconnect RTS output from power meter and reconnect to **PROBE** input. Set RTS **Menu 11 CW** selection to **OFF**.
 - (11) Adjust A1R43 (fig. 2) until reply video just appears (R).
 - (12) Repeat steps a(15) through (18).

19. Mode 4 Reply Evaluator

a. Performance Check

NOTE

PUSH TO TEST switch must be pressed and released several times to observe results.

- (1) Connect RTS oscilloscope **CH 2** probe to A2TP1 (fig. 2).
- (2) Press **PUSH TO TEST** switch and turn to **LOCK** position. If width of pulse on **CH2** is not between 267 and 271 µs, perform **b**(1) below.
- (3) Disconnect RTS oscilloscope CH1 probe from A1TP3 (fig. 2) and connect to A2TP2 (fig. 2).
- (4) Press oscilloscope AUTO-SCALE pushbutton and set TIME/DIV switch to $5~\mu s$. Position trailing edge of waveform on CH2 to align with second vertical graticule line.
 - (5) Press **PUSH TO TEST** switch and turn to **LOCK** position.

NOTE

The next two tests are performed much easier if the oscilloscope **AUTO-STORE** function is used. Press **ERASE** after each measurement to clear screen.

- (6) Press **PUSH TO TEST** switch. Pulse will momentarily appear at trailing edge of pulse on **CH 2**. If pulse width is not between 11.8 and 12.2 µs, perform **b**(2) below.
- (7) Disconnect oscilloscope **CH 1** probe from A2TP2 (fig. 2) and connect to A2TP3 (fig. 2).
- (8) Press **PUSH TO TEST** switch. Negative going pulse will appear on **CH 1** each time **PUSH TO TEST** switch is pressed and **ACCEPT** light will glow.
- (9) On RTS Menu 8 set RF selection to -6, then step INT GATE: #INHIBITED: selection from 1 to 10. Press TI PUSH TO TEST switch for each step and observe that REJECT or ACCEPT light glows. ACCEPT light should glow consistently to 6, become intermittent from 7 through 9 and extinguished upon reaching 10 (solid REJECT indication).
 - (10) Set INT GATE: #PASSED: selection to 16 and #INHIBITED: to 0.
- (11) Set MODE 4 DIR/RAD switch to DIR. Press PUSH TO TEST switch and observe that ACCEPT light glows.

(12) Step INT GATE: #INHIBITED: selection to 1 then 2. Press PUSH TO TEST switch for each step and observe that REJECT or ACCEPT light glows. REJECT light should be steady ON upon reaching 2.

NOTE

The above tests are similar to consecutive reply tests performed on AN/UPM-98, AN/TPM-25, and AN/APM-270(V)1 radar/transponder test sets. The TI is tested for a pass rate of 56 correct replies within the 64 pulse recurrence frequency (prf) for radiate mode and 16 for direct.

- (13) Set controls as listed in (a) through (e) below:
 - (a) **FUNCTION** switch to **SELF-TEST**.
 - (b) **MODE** switch to 1.
 - (c) **REFERENCE CODE** switches to 7777.
 - (d) MODE 4 switches to DOWN position.
- (14) Press **PUSH TO TEST** switch and turn to **LOCK** position. **ACCEPT** lamp with glow.
- (15) Set **MODE** switch to **2**, **3/A**, **C**, and **TEST** positions and repeat step (12) above for each setting. The **ACCEPT** lamp will glow in each position.
 - (16) Disconnect all equipment.

b. Adjustments

- (1) Adjust A2R2 (fig. 2) until pulse width on **CH 2** is 269 µs (R).
- (2) Adjust A2R7 (fig. 2) until pulse that appears when **PUSH TO TEST** switch is pressed is 12 µs in duration (R).

20. Mode 4 Power Supply Check

NOTE

Do not perform power supply checks if paragraphs 18 and 19 are within tolerance.

- (1) Set multimeter function for VDC and AUTO-RANGING.
- (2) Connect multimeter negative leads to A13TP2 (fig. 2) and positive lead to A3TP1 (fig. 2).
 - (3) If multimeter does not indicate between 4.9 and 5.1 V, perform **b**(1) below.

- (4) Disconnect equipment.
- (5) Set multimeter function for **mA DC** and **AUTO-RANGING**.
- (6) Connect multimeter negative lead to A3TP2 (fig. 2) and positive lead with 10Ω , 1 W resistor to A3TP1 (fig. 2).
 - (7) If multimeter does not indicate between 380 and 420 ma, perform **b**(2) below.

b. Adjustments

- (1) Adjust A3R24 (fig. 2) until multimeter indicates between 4.9 and 5.1 V dc (R).
- (2) Adjust A3R3 (fig. 2) until multimeter indicates between 380 and 420 mA (R).

21. Power Supply

NOTE

Do not perform power supply checks if all other parameters are within tolerance.

a. Performance Check

- (1) Set multimeter function for VDC and AUTO-RANGING.
- (2) Connect multimeter to A14TP3 (fig. 2) and chassis ground. If multimeter does not indicate between 148 to 152 V dc, perform **b** below.
- (3) Connect multimeter to A13TP4 (fig. 2) and chassis ground. Multimeter will indicate between 25 and 31 V dc.
- (4) Connect multimeter to A13TP3 (fig. 2) and chassis ground. Multimeter will indicate between 11 and 13 V dc.
- (5) Connect multimeter to A13TP1 (fig. 2) and chassis ground. Multimeter will indicate between -11 and -13 V dc.
 - **b.** Adjustments. Adjust A14R8 (fig. 2) for multimeter indication of +150 V dc.

22. Final Procedure

- **a**. Deenergize and disconnect all equipment. Reinstall metal shield over circuit card assembly and outer case on TI.
 - **b.** Annotate and affix DA label/form in accordance with TB 750-25

By Order of the Secretary of the Army:

ERIC K. SHINSEKI General, United States Army Chief of Staff

OFFICIAL:

Jul B Hul JOEL B. HUDSON Administrative Assistant to the Secretary of the Army

0315301

Distribution:

To be distributed in accordance with IDN 341126, requirements for calibration procedure TB 9-6625-2163-35.

<u>Instructions for Submitting an Electronic 2028</u>

The following format must be used if submitting an electronic 2028. The subject line must be exactly the same and all fields must be included; however, only the following fields are mandatory: 1, 3, 4, 5, 6, 7, 8, 9, 10, 13, 15, 16, 17, and 27.

From: "Whomever" whomever@redstone.army.mil

To: <2028@redstone.army.mil

Subject: DA Form 2028 1. **From**: Joe Smith

2. Unit: home

Address: 4300 Park
 City: Hometown

5. St: MO6. Zip: 77777

7. **Date Sent**: 19-OCT –93 8. **Pub no**: 55-2840-229-23

9. Pub Title: TM

10. Publication Date: 04-JUL-85

11. Change Number: 7
12. Submitter Rank: MSG
13. Submitter FName: Joe
14. Submitter MName: T

15. Submitter LName: Smith

16. Submitter Phone: 123-123-1234

17. **Problem**: 1 18. Page: 2 19. Paragraph: 3

20. Line: 421. NSN: 522. Reference: 623. Figure: 7

24. Table: 825. Item: 926. Total: 12327. Text

This is the text for the problem below line 27.

PIN: 065659-000